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In this paper, we introduce the temperature elliptic Sombor index, modified temperature 

elliptic Sombor index and their corresponding exponentials of a graph. Also we compute these 

temperature indices for some standard graphs and HC5C7 [p, q] nanotubes. Furthermore, we 
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 I. INTRODUCTION 

            In this paper, we consider only finite, simple, 

connected graphs. Let G be such a graph with vertex set 

V(G) and edge set E(G). The degree dG(u) of a vertex u is 

the number of vertices adjacent to u. For basic notations and 

terminologies, we refer [1]. 

 

In [2], Fajtlowicz defined the temperature of a 

vertex u of a graph G as 

   ( )
( )

( )
,=

−

G

G

d u
T u

n d u
 where |V(G)| = n. 

 

The first temperature index of a graph was 

introduced by Kisori et al in [3] and it is defined as  

( ) ( ) ( ) 
( )

1 .
uv E G

T G T u T v


= +  

The second temperature index of a graph was 

introduced by Kulli in [4] and it is defined as  

( ) ( ) ( )
( )

2 .
uv E G

T G T u T v


=   

 

The first hyper temperature index of a graph was 

introduced by Kulli in [5] and it is defined as  

( ) ( ) ( ) 
( )

2

1 .
uv E G

HT G T u T v


= +  

  

The F-temperature index of a graph was introduced 

by Kulli in [5] and it is defined as  

( ) ( ) ( )
( )

2 2
.

uv E G

FT G T u T v


 = +    

 

Recently, some temperature indices were studied in 

[6, 7, 8, 9, 10, 11, 12, 13, 14]. 

 

The elliptic Sombor index was introduced by Gutman et al. 

in [15] and it is defined as 

          

( ) ( ) ( )( ) ( ) ( )
( )

2 2

G G G G

uv E G

ESO G d u d v d u d v


= + +

       

Ref. [15] was soon followed by a series of publications [16, 

17, 18, 19, 20, 21]. 

      

We define the temperature elliptic Sombor index of 

a graph as  

     ( ) ( ) ( )( ) ( ) ( )
( )

2 2
.

uv E G

TESO G T u T v T u T v


= + +  

 

  Considering temperature elliptic Sombor index of 

a graph, we define temperature elliptic Sombor exponential 

of a graph as  

   ( ) ( ) ( )( ) ( ) ( )

( )

2 2

, T u T v T u T v

uv E G

TESO G x x + +



=    

 

             Also we introduce the modified temperature elliptic 

Sombor index of a graph as 

  ( )

( ) ( )( ) ( ) ( )( )
2 2

1
.m

uv E G

TESO G

T u T v T u T v

=

+ +
  
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  Considering modified temperature elliptic Sombor 

index of a graph, we define modified temperature elliptic 

Sombor exponential of a graph as  

   ( ) ( ) ( )( ) ( ) ( )

( )

2 2

1

, .m T u T v T u T v

uv E G

TESO G x x + +



=    

                 

 . In this paper, the temperature elliptic Sombor 

index and modified temperature elliptic Sombor index for 

some standard graphs and HC5C7 [p, q] nanotubes are 

determined. Also some properties of newly defined 

temperature elliptic Sombor index are established. 

 

II. RESULTS FOR SOME STANDARD GRAPHS 

 

Proposition 1.  Let G   be r-regular with n vertices and r≥ 2. 

Then      

             ( )
( )

3

2

2
.

nr
TESO G

n r
=

−  

 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then  ( )

r
T u

n r
=

−
 

  ( ) ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

TESO G T u T v T u T v


= + +   

2

     

2

2

nr r r r r

n r n r n r n r

     
= + +     

− − − −                     

( )

3

2

2
.

nr

n r
=

−
               

Corollary 1.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

             ( )
( )2
8 2

.
2

n

n
TESO C

n
=

−  

 

Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

             ( ) ( )
 

3
2 1 .nTE KSO n n= −

 
 

Proposition 2.  Let G   be r-regular with n vertices and  r≥ 2. 

Then      

             ( )
( )2

.
4 2

m n n r
TESO G

r

−
=

 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then  ( )

r
T u

n r
=

−
   

( )

   

2 2

 

1

2

m nr
TESO G

r r r r

n r n r n r n r

=

     
+ +     

− − − −     

               

( )2

.
4 2

n n r

r

−
=            

 Corollary 2.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

             ( )
( )22

.
8 2

m
n

n n
TESO C

−
=    

 

Corollary 2.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

             ( )
( )

  .
4 2 1

m
n

n
T KESO

n
=

−
 

 

III. PROPERTIES OF TEMPERATURE ELLIPTIC 

SOMBOR INDEX   

 

Theorem 1. Let G be a connected graph. Then 

                ( ) ( ) ( )
1 1

1
.

2
HT G TES G GHO T  

Proof:  For any two positive numbers a and b, 

                 
2 21

( ) .
2

a b a b a b+ +  +  

For a=T(u) and b=T(v) , the above inequality becomes               

( ) ( ) ( )2 21
( ) ( ) ( ) ( ) ( ) (   ) .

2
 T u T v T u T v T u T v+ +  +  

( ) ( ) ( )2 2 2     
1

( ) ( ) ( ) ( ) ( ) ( )
2

T u T v T u T v T u T v+ + +    

                           ( )
2

) ( ) (T u T v +  

By the definitions, we have 

 ( ) ( )( )
( )

21

2 uv E G

T u T v


+      

                   ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

T u T v T u T v


+ +   

                  ( ) ( )( )
( )

2

uv E G

T u T v


 +  

Thus we get the desired result. 

Theorem 2. Let G be a connected graph. Then 

    ( ) ( )( ) ( )
2

1
2

2
FT G T G TESO G+ 

 

                 ( ) ( )
22 .FT G T G +  

Proof:  From Theorem 1, we have 

 ( ) ( )( )
( )

21

2 uv E G

T u T v


+      

                   ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

T u T v T u T v


+ +   
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                  ( ) ( )( )
( )

2

uv E G

T u T v


 +  

Thus 

( ) ( ) ( ) ( )( )
( )

2 21
2

2 uv E G

T u T v T u T v


+ +      

            ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

T u T v T u T v


+ +   

           ( ) ( ) ( ) ( )( )
( )

2 2
2

uv E G

T u T v T u T v


 + +  

Thus we get the desired result. 

Theorem 3. Let G be a connected graph. Then 

                ( ) ( ) ( )2 .FT G TESO G FT G  

Equality holds if and only if G is regular. 

 Proof:  For any two positive numbers a and b, 

            
2 21

( ) .
2

a b a b a b+ +  +  

            
2 2 2 22a b a b a b+  + +  

          
2 2 2 2 2 2( ) ( ) 2( )a b a b a b a b+  + ++  

Using the above inequality and the definition of TESO, we 

obtain 

( ) ( )( )
( )

2 2

uv E G

T u T v


+      

            ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

T u T v T u T v


 + +  

           ( ) ( )( )
( )

2 2
2

uv E G

T u T v


 +  

Thus we get the desired result. 

Theorem 4. Let G be a connected graph with m edges. Then 

       ( )
1( ) ( ).TESO G HT G FT G  

 Proof:  Using the Cauchy-Schwarz inequality, we obtain  

 ( ) ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

TESO G T u T v T u T v


= + +          

( ) ( )( ) ( ) ( )
( )( )

2
2 2 2

uv E G uv E G

T u T v T u T v
 

 
+ +    

  1( ) ( ).HT G FT G=  

Thus              ( )
1( ) ( ).TESO G HT G FT G

 
Theorem 5. Let G be a connected graph with m edges. Then 

       ( ) ( )2( ) 2 ( ) ( ).TESO G FT G T G FT G+  

 Proof:  From Theorem 4, we have 

( )TESO G  

( ) ( )( ) ( ) ( )
( )( )

2
2 2 2

uv E G uv E G

T u T v T u T v
 

 
+ +     

We have 

( ) ( )( )
( )

2

uv E G

T u T v


+      

( ) ( ) ( ) ( )( )
( )

2 2
2

uv E G

T u T v T u T v


= + +  

2( ) 2 ( )FT G T G= +  

Thus we conclude that 

  ( ) ( )2( ) 2 ( ) ( ).TESO G FT G T G FT G+  

 

IV. RESULTS FOR HC5C7 [p, q] NANOTUBES 

In this section, we consider HC5C7 [p, q] nanotubes in which 

p is the number of heptagons in the first row and q rows of 

pentagons repeated alternately. The 2-D lattice of HC5C7 [8, 

4] nanotube is presented in Figure 1. 

 

 
Figure 1. 2-D lattice of HC5C7 [8, 4] nanotube 

 

Let G be a graph of a nanotube HC5C7 [p, q]. By calculation, 

G has 4pq vertices and 6pq – p edges. Clearly, G has two 

types of edges based on the degree of end vertices of each 

edge as follows: 

 

 E1 = {uv E(G)| dG(u)=2, dG(v) = 3},  |E1| = 

4p 

 E2 = {uv E(G)| dG(u)= dG(v) = 3},  |E2| = 

6pq – 5p. 

  

Therefore, in TA[n], there are two types of edges based on 

the temperature of end vertices of each edge as follows: 

TE1={uv E(G) | T(u)=
2

4 2pq −
, T(v)=

3

4 3pq −
}, |TE1| = 

4p. 

TE2={uv E(G) | T(u)=
3

4 3pq −
, T(v)=

3

4 3pq −
}, |TE2| = 

6pq – 5p. 

. 

Theorem 6. The temperature elliptic Sombor index of a 

nanotube HC5C7 [p, q] is 

( )TESO G =
          

( )( )

2 2
20 12 2 3

4
4 2 4 3 4 2 4 3

pq
p

pq pq pq pq

−     
= +     − − − −    

( )
2

3
2 2 6 5 .

4 3
pq p

pq

 
+ −  − 
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Proof: Let G = HC5C7 [p, q]. We have 

 

( ) ( ) ( )( ) ( ) ( )
( )

2 2

uv E G

TESO G T u T v T u T v


= + +  

  

2 2
2 3 2 3

4
4 2 4 3 4 2 4 3

p
pq pq pq pq

     
= + +     − − − −     

 

   ( )6 5pq p+ −  

    

2 2
3 3 3 3

4 3 4 3 4 3 4 3pq pq pq pq

     
+ +     − − − −     

 

( )( )

2 2
20 12 2 3

4
4 2 4 3 4 2 4 3

pq
p

pq pq pq pq

−     
= +     − − − −    
 

     ( )
2

3
2 2 6 5 .

4 3
pq p

pq

 
+ −  − 

 

 

Theorem 7. The temperature elliptic Sombor exponential of 

a nanotube HC5C7 [p, q] is 

( ),TESO G x =  
( )( )

2 2
20 12 2 3

4 2 4 3 4 2 4 3
4

pq

pq pq pq pq
px

−     
+     − − − −      

   ( )

2
3

2 2
4 3

6 5 .
pq

pq p x

 
 − + −  

 

Proof: Let G = HC5C7 [p, q]. We have 

   ( ) ( ) ( )( ) ( ) ( )

( )

2 2

, T u T v T u T v

uv E G

TESO G x x + +



=   

  

2 2
2 3 2 3

4 2 4 3 4 2 4 3
4

pq pq pq pq
px

     
+ +     − − − −     =  

   ( )

2 2
3 3 3 3

4 3 4 3 4 3 4 3
6 5 .

pq pq pq pq
pq p x

     
+ +     − − − −     + −  

By simplifying the above equation, we obtain the desired 

result. 

 

Theorem 8. The modified temperature elliptic Sombor 

index of a nanotube HC5C7 [p, q] is 

( )mTESO G =
          

( )( )

2 2

4

20 12 2 3

4 2 4 3 4 2 4 3

p

pq

pq pq pq pq

=

−     
+    − − − −    

( )
2

6 5
.

3
2 2

4 3

pq p

pq

−
+

 
 − 

 

 

Proof: Let G = HC5C7 [p, q]. We have 

 

( )

( ) ( )( ) ( ) ( )( )
2 2

1m

uv E G

TESO G

T u T v T u T v

=

+ +
  

  
2 2

4

2 3 2 3

4 2 4 3 4 2 4 3

p

pq pq pq pq

=

     
+ +     − − − −     

 

    

    
( )

2 2

6 5

3 3 3 3

4 3 4 3 4 3 4 3

pq p

pq pq pq pq

−
+

     
+ +     − − − −     

 

( )( )

2 2

4

20 12 2 3

4 2 4 3 4 2 4 3

p

pq

pq pq pq pq

=

−     
+    − − − −    

 

     
( )

2

6 5
.

3
2 2

4 3

pq p

pq

−
+

 
 − 

 

 

Theorem 9. The modified temperature elliptic Sombor 

exponential of a nanotube HC5C7 [p, q] is 

( ),mTESO G x =  
( )( )

2 2
20 12 2 3

4 2 4 3 4 2 4 3
4

pq

pq pq pq pq
px

−     
+     − − − −      

   ( )

2
3

2 2
4 3

6 5 .
pq

pq p x

 
 − + −  

 

Proof: Let G = HC5C7 [p, q]. We have 

   ( ) ( ) ( )( ) ( ) ( )

( )

2 2

1

,m T u T v T u T v

uv E G

TESO G x x + +



=   

  

2 2

1

2 3 2 3

4 2 4 3 4 2 4 3
4

pq pq pq pq
px

     
+ +     − − − −     =  

   ( )

2 2

1

3 3 3 3

4 3 4 3 4 3 4 3
6 5 .

pq pq pq pq
pq p x

     
+ +     − − − −     + −  

By simplifying the above equation, we get the desired result. 

 

V.  CONCLUSION       

    In this paper, we have introduced the temperature elliptic 

Sombor index, the modified temperature elliptic Sombor 

index of a graph. We have computed these indices for some 

standard graphs and HC5C7 [p, q] nanotubes.  Also we have 

obtained some properties of the temperature elliptic Sombor 

index. 
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