
Abstract. The present paper is on derivation of many combinatorial
identities of xn = Tn(9), yn = Un−1(9), L6n+k = Lk xn + 20 Fk yn

and F6n+k = Fk xn + 4 Lk yn, k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, . . .,
where Tn(x) and Un−1(x) are the well known Tchebyshev polynomials
of first and second kind and Ln and Fn are the well known Lucas and
Fibonacci numbers.

Keywords: Lucas and Fibonacci numbers, Tchebyshev polynomials
of first and second kind, Combinatorial identities.

1. Introduction

In the recent literature, many combinatorial studies on Combinato-
rial entities such as Catalan numbers, Lucas numbers, Fibonacci numbers,
Tchebyshev polynomials, Pell and Pell-Lucas polynomials, Brahmagupta
polynomials and so on are available in abundance [2, 6, 11, 12, 13, 14, 15].
Combinatorial study combined with number theory will be an ideal plat-
form for the derivation of many combinatorial identities such as recurrence
relations, generating functions, matrix power identities, cassini determinant
identities, different types of summation identities and convolution identities
[1, 2, 3, 4, 5, 7, 8, 9, 10, 15].
The main motivation for the present paper is the beautiful connection be-
tween (L6n, F6n) and (Tn(x), Un−1(x)) given below.
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and
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For the sake of simplicity, one may put xn = Tn(9) and yn = Un−1(9).
Then they fit so well that one may derive L6n+k = Lk xn + 20 Fk yn and
F6n+k = Fk xn+4 Lk yn, k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, . . .. The number
theory of Ln and Fn enables one to derive many Combinatorial identities
mentioned in the end of the above paragraph.

2. Recurrence Relations

For the sake of smooth computation of {(L6n+k, F6n+k) : k = 0, 1, 2, 3, 4, 5 and n =

0, 1, 2, 3, .....}, a pair of sequences, namely (xn, yn) described by Tchebyshev
polynomials is extensively applied [4, 5, 6].
Definition:

xn = Tn(9), yn = Un−1(9) n = 0, 1, 2 · · · .

The pair (xn, yn) has the following binet form :

xn =
1

2
[αn + βn]

yn =
αn − βn

α− β

where α = 9 +
√
80, β = 9−

√
80 and n = 0, 1, 2 · · · .

α and β satisfy the following relations : α+β = 18, α−β = 8
√
5, α β = 1. By

applying above binet form, one can show that (xn, yn) satisfy the following
relations which are directed by Tchebyshev polynomials [4, 5, 6].
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Identities 2.1

(1) xn+1 = 18 xn − xn−1

= 9 yn+1 − yn

= 9 xn + 80 yn

(2) yn+1 = 18 yn − yn−1

=
9 xn+1 − xn

80
= xn + 9 yn

n = 1, 2, 3 . . .

Identities 2.2

(1) L6n+k =
Fk xn+1 + (−1)kF6−k xn

4

= Lk yn+1 + (−1)k−1 L6−k yn

= Lk xn + 20 Fk yn

(2) F6n+k = Fk yn+1 + (−1)kF6−k yn

=
Lk xn+1 + (−1)k−1L6−k xn

20
= Fk xn + 4 Lk yn

k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, . . .

Proof
For k = 0, the six identities of result (2.2), follows directly by the binet
forms of xn, yn, xn+1 and yn+1.
For k = 1, one may apply following identities [10, 13, 15].

(i) 8 L6n+1 = L6n+6 − 5 L6n

(ii) 8 L6n+1 = F6n+6 + 11 F6n

(iii) 2 L6n+1 = L6n + 5 F6n

(iv) 8 F6n+1 = F6n+6 − 5 F6n

(v) 40 F6n+1 = L6n+6 + 11 L6n

(vi) 2 F6n+1 = L6n + F6n

n = 0, 1, 2, . . .
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and express interms of xn and yn. The identities for k = 2, 3, 4, 5 simply
follows by the well known relations

L6n+(k−1) + L6n+k = L6n+(k+1) ; F6n+(k−1) + F6n+k = F6n+(k+1),

k = 1, 2, 3, 4 and n = 0, 1, 2, . . .

3. Matrix power identities, Cassini determinant identities
and Generating functions

In the literature, a matrix power identity called Brahmagupta power
identity ([9], [12]) is described[
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When ξ = 9, η = 1 and t = 80 we obtain xn and yn. As a consequence we
have the following Matrix power identities and Cassini determinant identi-
ties described ih the following results
Identities 3.1

(1)

[
xn yn

80 yn xn

]
=

[
9 1

80 9

]n

(2)

[
yn−1 yn

yn yn+1

]
=

[
0 1

1 18

] [
0 −1

1 18

]n−1

(3)

[
xn−1 xn

xn xn+1

]
=

[
1 9

9 161

] [
0 −1

1 18

]n−1

n = 1, 2, 3, . . .

Identities 3.2

(1) x2n − 80 y2n = 1

(2) yn−1 yn+1 − y2n = −1

(3) xn−1 xn+1 − x2n = 80

n = 1, 2, 3, . . .
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Identities 3.3 [
4 L6n+k F6n+k

20 F6n+k L6n+k

]
=

[
4 Lk Fk

20 Fk Lk

] [
9 1

80 9

]n
k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, 3, . . .

Next we state the generating function of xn, yn, L6n+k and F6n+k, k =

0, 1, 2, 3, 4, 5 with the help of the identities given by (2.1) and (2.2).
Identities 3.4

(1)

∞∑
n=0

xn tn =
1− 9t

1− 18t− t2

(2)
∞∑
n=0

yn tn =
t

1− 18t− t2

(3)
∞∑
n=0

L6n+k tn =
Lk + (L6+k − 18 Lk) t

1− 18t− t2

(4)

∞∑
n=0

F6n+k tn =
Fk + (F6+k − 18 Fk) t

1− 18t− t2

k = 0, 1, 2, 3, 4, 5.

4. Summation identities

By suitable rearranging recurrence relations one like below the summa-
tion identities can be derived non trivially.

xk = 18 xk−1 − xk−2, k = 2, 3, ...., n

Adding all we get

16 (x0 + x1 + ...+ xn) = (xn+1 − xn) + 8

Following the same ideas, one can derive the following summation identities
:
Identities 4.1

(1) 16
n∑

k=0

xk = xn+1 − xn + 8

(2) 16

n∑
k=0

yk = yn+1 − yn − 1

n = 0, 1, 2, 3, . . .

“On Combinatorial Identities of Lucas and Fibonacci Numbers Connected to Tchebyshev Polynomials”

4915



Next by employing

y2k+2 + 19 y2k = 18 (y2k + y2k+1), k = 0, 1, 2, ...., n

We obtain
n∑

k=0

y2k =
1

320
[y2n+2 − y2n − 18] , n = 0, 1, 2, 3, . . .

Similarly one can also derive an identity for
∑n

k=0 x2k. Together the result
is stated below.
Identities 4.2

(1) 320
n∑

k=0

x2k = x2n+2 − x2n + 160

(2) 320
n∑

k=0

y2k = y2n+2 − y2n − 18

n = 0, 1, 2, 3, . . .

Since
∑n

k=0(x2k+x2k+1) =
∑2n+1

k=0 xk, the summation identities for
∑n

k=0 x2k+1

and
∑n

k=0 y2k+1 can be derived directly. So we just leave it for the inter-
ested reader to figure it out. More intersting ones are square sums of xk’s
and yk’s. Using 2L12k = L2

6k + 5F 2
6k and x2k − 80 y2k = 1, one can derive

x2k = 2 x2k − 1 = 160 y2k + 1. As a result one may directly derive the
following two square sum identities :
Identities 4.3

(1) 640
n∑

k=0

x2k = (x2n+2 − x2n) + 160 (2n+ 3)

(2) 640

n∑
k=0

y2k =
1

80
[(x2n+2 − x2n)− 160 (2n+ 1)]

n = 0, 1, 2, 3, . . .

By making use of L2
6n+k = L2

k x2n + 400 F 2
k y2n + 20 F2k y2k and F 2

6n+k =

F 2
k x2n + 16 L2

k y2n + 4 F2k y2k : k = 0, 1, 2, 3, 4, 5. One can directly derive
the following square sum identities :
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Identities 4.4

(1)
n∑

r=0

L2
6r+k =

L2k

320
(x2n+2 − x2n) +

F2k

16
(y2n+2 − y2n) +

L2
k

4
(2n+ 3)− 100 F 2

k (2n+ 1)− 9

8
F2k

(2)

n∑
r=0

F 2
6r+k =

L2k

1600
(x2n+2 − x2n) +

F2k

80
(y2n+2 − y2n) +

F 2
k

4
(2n+ 3)− 4L2

k(2n+ 1)− 9

40
F2k

k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, 3, . . .

5. Convolution identities

The binet forms (2.2) will guide the following convolution identities :
Identities 5.1

(1)
n∑

k=0

xk xn−k =
1

2
[(n+ 1)xn + yn+1]

(2)

n∑
k=0

yk yn−k =
1

160
[(n+ 1)xn − yn+1]

(3)
n∑

k=0

xk yn−k =
n∑

k=0

yk xn−k =
n+ 1

2
yn

n = 0, 1, 2, . . .

Identities 5.2

(1)

n∑
r=0

L6r+k L6(n−r)+k = L2k(n+ 1)xn + (−1)k 2 yn+1 + 20(n+ 1)F2kyn

(2)

n∑
r=0

F6r+k F6(n−r)+k =
L2k

5
(n+ 1) xn + (−1)k+1 2

5
yn+1 + 4 (n+ 1) F2k yn

(3)
n∑

r=0

L6r+k F6(n−r)+k = F2k(n+ 1)xn + 4L2k(n+ 1)yn

k = 0, 1, 2, 3, 4, 5 and n = 0, 1, 2, 3, . . .

The identities 5.1 and 5.2 can be derived directly using the results of section
2. For more details about computation and application of Convolution
identities one may refer to [2].
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