
1 Abstract

In this recurring paper, we provide a compact and more general algorithm for obtaining the
inverse of p-diagonal matrices. We implemented it on a more complex structure, a nona-diagonal
matrix and tested it,to test its efficiency using the same method. Currently, this extension not
only showcases the flexibility of our method,but also shows that we can further improve the
computational performance when working with more general matrix structures.
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2 Introduction

Diagonal matrices are more of a mathematical tool that they are used a lot in a lot of fields from
numerical analysis to engineering, physics, and applied mathematics. They are well known for
their structured format, with non-zero entries occurring only on the main diagonal and a speci-
fied number of adjacent diagonals; which allows for very efficient computation. Such matrices
are especially common in the numerical solution of ordinary and partial differential equations
(ODEs and PDEs) where they typically result from discretization methods like finite differences
or finite elements. They also be used in interpolation problem when itcomes to dealing with a
smooth approximation to our data, and when we need to deal with boundary value problems
BVP � here this functions will be useful in order to get a differential equations solution with
some boundaries on it.

In this paper, we investigate the case of p-diagonal matrices, a special case of diagonal matrices
where the non-zero entries lie along the main diagonal as well as the p adjacent diagonals, for a
small, constant parameter p, which leads to structures that are both simple yet highly computable.
The main goal is to propose a general method for inverting p-diagonal matrices. The importance
of the inverse of these matrices lies in the fact that solving linear systems — which are abundant
in scientific computations and numerical simulations — could be performed efficiently.
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We commence with providing some theoretical background into the characteristics of these so-
called p-diagonal matrices, and their inverses. Then, we unfold a stage-by-stage algorithm with
exploiting the particular structure of these matrices to speed up the calculation. It has low time-
and space complexity and is also implemented as a step by step process which is why this
algorithm is an excellent option for applications that operate on large datasets.

In order to test and proved the practical functionality of our algorithm, we apply it to a more
complex class of matrices where non-zero elements are in 9 diagonals, known as non-diagonal
matrices. This extension has two roles to play; one is to show that our approach can be applied
to matrices of higher bandwidth, and the other is to understand the scalability of the algorithm to
more complex matrix patterns. In this paper, we demonstrate that our method is robust and flex-
ible to be applied intobroader problems, by importing our method into nona-diagonal matrices.

The results in this paper will help to both, develop the theory of p-diagonal and nona-diagonal
matrices as well as provide tools to address the real problems. They are explored practically
through numerical computations arising from differential equations, interpolation, boundary
value problems,etc., which may benefit significantly from the proposed algorithm. This work
is uniquely positioned to be a resource for both theoretical and applied researchers and prac-
titioners working in computational mathematics, the promotion and demonstration of which is
certainly needed for the broader community.

3 Inverse of p-diagonal matrix

Definition:
Consedering the p-diagonal matrix as bellow:

D =



d a1 a2 · · · ap 0 · · · 0

b1
. . . . . . . . . . . . . . . . . .

...

b2
. . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . ap

bp
. . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . a1
0 · · · 0 bp · · · b2 b1 d


(1)

Where D ∈ Mn×n(K).
Assuming that D is non-singular and :

D−1 = [C1, C2, · · · , Cn]

Where (Ci)1≤i≤n are the columns inverse of D−1. From the relation DD−1 = In (where In
denotes the identity matrix) we deduce the relations:

Cn−p =
1

ap
(En − ap−1Cn−p+1 − ap−2Cn−p+2 − · · · − dCn)
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For n− p− 1 ≤ j ≤ p− 1

Cj−p =
1

ap
(Ej − ap−1Cj−p+1 − ap−2Cj−p+2 − · · · − bpCj+p1)

Consedering the p numbers of the sequences of numbers (Ai,j)1≤i≤p;1≤j≤n defined as:
For 0 ≤ k ≤ p

Ap,p−k = 1

For 1 ≤ i ≤ p
dAi,0 + a1Ai,1 + · · ·+ apAi,p = 0

b1Ai,0 + dAi,1 + a1Ai,1 + · · ·+ apAi,p+1 = 0

...

bpAi,0 + bp−1Ai,1 + · · ·+ apAi,n−1 = 0

For p ≤ q ≤ n− p and p ≤ j ≤ 1.

bjAi,q−p + bj−1Ai,q−p+1 + · · ·+ ajAi,q+p−1 = 0

And
bpAi,n−2 + · · ·+ ap−1Ai,n−1 +Ai,n = 0

...

bpAi,n−p−1 + · · ·+ dAi,n−p+2 +Ai,n−p+1 = 0

We define for such 1 ≤ i ≤ p and 0 ≤ j ≤ n+ p− 1:

Q1,j =


A1,n−p+1 · · · A1,n+p−2 A1,j

... · · ·
...

...
... · · ·

...
...

Ap,n−p+1 · · · Ap,n+p−2 Ap,j

 (2)

... (3)

Qp−1,j =



A1,n−p+1 A1,j A1,n−p+3 · · · A1,n+p−1
... · · ·

...
...

... · · ·
...

...
... · · ·

...
...

Ap,n−p+1 Ap,j Ap,n−p+3 · · · Ap,n+p−1


(4)
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Qp,j =


A1,j A1,n−p+2 · · · A1,n+p−1

... · · ·
...

...
... · · ·

...
...

Ap,j Ap,n−p+2 · · · Ap,n+p−1

 (5)

WE can write:
DQ1 = −Q1,n+p−1En−p+1

...

DQp = −Qp,nEn

Theorem 1 Assuming that Qn+p−1 ̸= 0, then D is non-singular and:

Cn =
−1

Q1,n+p−1
[Q1,0, Q1,1, · · · , Q1,n−1]

t (6)

...

Cn−p+1 =
−1

Qp,n−p+1
[Qp,0, Qp,1, · · · , Qp,n−1]

t (7)

4 Numerical experiments

In this section we applied the generalized algorithm in a Nona-diagonal Toeplitz matrix defined
as:

D =



d a1 a2 a3 a4 0 · · · 0

b1
. . . . . . . . . . . . . . . . . .

...

b2
. . . . . . . . . . . . . . . . . . 0

b3
. . . . . . . . . . . . . . . . . . a4

b4
. . . . . . . . . . . . . . . . . . a3

0
. . . . . . . . . . . . . . . . . . a2

...
. . . . . . . . . . . . . . . . . . a1

0 · · · 0 b4 b3 b2 b1 d


(8)

We assume that D is non-singular then:

D−1 = [C1, · · · , Cn]

Where (Ci)1≤i≤n are the columns of the inverse D−1 From the relation DD−1 = In we get:

Cn−4 =
1

a4
(En − a3Cn−3 − a2Cn−2 − a1Cn−1 − dCn)
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Cj−4 =
1

a4
(Ej−a3Cj−3−a2Cj−2−a1Cj−1−dCj−b1Cj+1−b2Cj+2−b3Cj+3−b4Cj+4) for n−5 ≤ j ≤ 3

Consider the sequence of numbers (Xi)(0≤i≤n), (Yi)(0≤i≤n), (Vi)(0≤i≤n) and (Wi)(0≤i≤n) char-
acterized by a term recurrence relation:

X0 = 0

X1 = 0

X2 = 0

X3 = 1

dX0 + a1X1 + a2X2 + a3X3 + a4X4 = 0

b1X0 + dX1 + a1X2 + a2X3 + a3X4 + a4X5 = 0

b2X0 + b1X1 + dX2 + a1X3 + a2X4 + a3X5 + a4X6 = 0

b3X0 + b2X1 + b1X2 + dX3 + a1X4 + a2X5 + a3X6 + a4X7 = 0

b4X0 + b3X1 + b2X2 + b1X3 + dX4 + a1X5 + a2X6 + a3X7 + a4X8 = 0

b4Xj−4+b3Xj−3+b2Xj−2+b1Xj−1+dXj+a1Xj+1+a2Xj+2+a3Xj+3+a4Xj+4 = 0 for 5 ≤ j ≤ n−5

b4Xn−9b3Xn8+b2Xn−7+b1Xn−6+dXn−5+a1Xn−4+a2Xn−3+a3Xn−2+a4Xn−1+Xn = 0

b4Xn−8b3Xn7+b2Xn−6+b1Xn−5+dXn−4+a1Xn−3+a2Xn−2+a3Xn−1+a4Xn+Xn+1 = 0

b4Xn−7b3Xn6+b2Xn−5+b1Xn−4+dXn−3+a1Xn−2+a2Xn−1+a3Xn+a4Xn+1+Xn+2 = 0

b4Xn−6b3Xn5+b2Xn−4+b1Xn−3+dXn−2+a1Xn−1+a2Xn+a3Xn+1+a4Xn+2+Xn+3 = 0

And:

Y0 = 0

Y1 = 0

Y2 = 1

Y3 = 0

dY0 + a1Y1 + a2Y2 + a3Y3 + a4Y4 = 0

b1Y0 + dY1 + a1Y2 + a2Y3 + a3Y4 + a4Y5 = 0

b2Y0 + b1Y1 + dY2 + a1Y3 + a2Y4 + a3Y5 + a4Y6 = 0

b3Y0 + b2Y1 + b1Y2 + dY3 + a1Y4 + a2Y5 + a3Y6 + a4Y7 = 0

b4Y0 + b3Y1 + b2Y2 + b1Y3 + dY4 + a1Y5 + a2Y6 + a3Y7 + a4Y8 = 0

b4Yj−4+b3Yj−3+b2Yj−2+b1Yj−1+dYj+a1Yj+1+a2Yj+2+a3Yj+3+a4Yj+4 = 0 for 5 ≤ j ≤ n−5

b4Yn−9+b3Yn8 +b2Yn−7+b1Yn−6+dYn−5+a1Yn−4+a2Yn−3+a3Yn−2+a4Yn−1+Yn = 0
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b4Yn−8+b3Yn7 +b2Yn−6+b1Yn−5+dYn−4+a1Yn−3+a2Yn−2+a3Yn−1+a4Yn+Yn+1 = 0

b4Yn−7+b3Yn6 +b2Yn−5+b1Yn−4+dYn−3+a1Yn−2+a2Yn−1+a3Yn+a4Yn+1+Yn+2 = 0

b4Yn−6+b3Yn5 +b2Yn−4+b1Yn−3+dYn−2+a1Yn−1+a2Yn+a3Yn+1+a4Yn+2+Yn+3 = 0

Also we have:
V0 = 0

V1 = 1

V2 = 0

V3 = 0

dV0 + a1V1 + a2V2 + a3V3 + a4V4 = 0

b1V0 + dV1 + a1V2 + a2V3 + a3V4 + a4V5 = 0

b2V0 + b1V1 + dV2 + a1V3 + a2V4 + a3V5 + a4V6 = 0

b3V0 + b2V1 + b1V2 + dV3 + a1V4 + a2V5 + a3V6 + a4V7 = 0

b4V0 + b3V1 + b2V2 + b1V3 + dV4 + a1V5 + a2V6 + a3V7 + a4V8 = 0

b4Vj−4+b3Vj−3+b2Vj−2+b1Vj−1+dVj+a1Vj+1+a2Vj+2+a3Vj+3+a4Vj+4 = 0 for 5 ≤ j ≤ n−5

b4Vn−9+b3Vn8 +b2Vn−7+b1Vn−6+dVn−5+a1Vn−4+a2Vn−3+a3Vn−2+a4Vn−1+Vn = 0

b4Vn−8+b3Vn7 +b2Vn−6+b1Vn−5+dVn−4+a1Vn−3+a2Vn−2+a3Vn−1+a4Vn+Vn+1 = 0

b4Vn−7+b3Vn6 +b2Vn−5+b1Vn−4+dVn−3+a1Vn−2+a2Vn−1+a3Vn+a4Vn+1+Vn+2 = 0

b4Vn−6+b3Vn5 +b2Vn−4+b1Vn−3+dVn−2+a1Vn−1+a2Vn+a3Vn+1+a4Vn+2+Vn+3 = 0

Finnaly:
W0 = 1

W1 = 0

W2 = 0

W3 = 0

dW0 + a1W1 + a2W2 + a3W3 + a4W4 = 0

b1W0 + dW1 + a1W2 + a2W3 + a3W4 + a4W5 = 0

b2W0 + b1W1 + dW2 + a1W3 + a2W4 + a3W5 + a4W6 = 0

b3W0 + b2W1 + b1W2 + dW3 + a1W4 + a2W5 + a3W6 + a4W7 = 0

b4W0 + b3W1 + b2W2 + b1W3 + dW4 + a1W5 + a2W6 + a3W7 + a4W8 = 0

b4Wj−4+b3Wj−3+b2Wj−2+b1Wj−1+dWj+a1Wj+1+a2Wj+2+a3Wj+3+a4Wj+4 = 0 for 5 ≤ j ≤ n−5
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b4Wn−9+b3Wn8+b2Wn−7+b1Wn−6+dWn−5+a1Wn−4+a2Wn−3+a3Wn−2+a4Wn−1+Wn = 0

b4Wn−8+b3Wn7+b2Wn−6+b1Wn−5+dWn−4+a1Wn−3+a2Wn−2+a3Wn−1+a4Wn+Wn+1 = 0

b4Wn−7+b3Wn6+b2Wn−5+b1Wn−4+dWn−3+a1Wn−2+a2Wn−1+a3Wn+a4Wn+1+Wn+2 = 0

b4Wn−6+b3Wn5+b2Wn−4+b1Wn−3+dWn−2+a1Wn−1+a2Wn+a3Wn+1+a4Wn+2+Wn+3 = 0

Considering for such 0 ≤ i ≤ n+ 3

Pi = det


Xn Xn+1 Xn+2 Xi

Yn Yn+1 Yn+2 Yi
Vn Vn+1 Vn+2 Vi

Wn Wn+1 Wn+2 Wi



Li = det


Xn Xn+1 Xi Xn+3

Yn Yn+1 Yi Yn+3

Vn Vn+1 Vi Vn+3

Wn Wn+1 Wi Wn+3



Mi = det


Xn Xi Xn+2 Xn+3

Yn Yi Yn+2 Yn+3

Vn Vi Vn+2 Vn+3

Wn Wi Wn+2 Wn+3



Ni = det


Xi Xn+1 Xn+2 Xn+3

Yi Yn+1 Yn+2 Yn+3

Vi Vn+1 Vn+2 Vn+3

Wi Wn+1 Wn+2 Wn+3


Theorem 2 We supposed that Pn+3 ̸= 0, then D is non-singular and:

Cn =
−1

Pn+3
[P0, · · · , Pn−1]

Cn−1 =
−1

Ln+2
[L0, · · · , Ln−1]

Cn−2 =
−1

Mn+1
[M0, · · · ,Mn−1]

Cn−3 =
−1

Nn
[N0, · · · , Nn−1]
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5 Exemple

The table compares ’Toeplitz-Hessenberg’ andour algorithm (implemented in MATLAB
R2024b) execution time. Execution time (in seconds) for the two considered proposed algo-
rithms evaluated in MATLAB R2024b.

Table 1: The running time
Size of the matrix (n) Algorithm LU method

100 0.036954 0.918161
200 0.061992 2.547606
300 0.090051 6.816085
500 0.149696 24.165349

1000 0.314484 149.750575

6 Conclusion

To sum up, this paper presents a method to compute p-diagonal matrix inverse with a low compu-
tational overhead andfurther generalizes the result for the application of nona-diagonal matrices.
Thanks to thestructured nature of these matrices, it is a significant tool for solving problems in
numerical analysis, differential equations and more by improving exponentially the efficiency
of the algorithm. We note that customized algorithms for structured matrices are important, and
thus, this work could serve asa springboard to extend even more matrix classes and leading to
future work in high-performance numerical algorithms.

"An Efficient Algorithm for the Inverse of P-Diagonal Toeplitz Matrices"

4891



References

[1] A. Hadj, M. Elouafi, A fast numerical algorithm for the inverse of a tridiagonal and penta-
diagonal matrix, Appl. Math. Comput. 202 (2008) 441-445.

[2] B. Talibi, A. Hadj, D. Sarsri, A numerical algorithm for computing the inverse of a Toeplitz
pentadiagonal matrix, Applied Mathematics and Computational Mechanics 2018, 17(3), 83-
95.

[3] B. Talibi, A. Hadj, D. Sarsri, A numerical algorithm to inversing a Toeplitz heptadiagonal
matrix, Palestine Journal of Mathematics. Vol. 10(1)(2021) , 242–250.

[4] El-Mikkawy, M.E.A. (2004) A Fast Algorithm for Evaluating nth Order Tri-Diagonal De-
terminants. Journal of Computational and Applied Mathematics, 166, 581-584.

[5] B. Talibi, A.Aiat Hadj, D. Sarsri,A New Matrix Decomposition Method for Inverting the
Comrade Matrix, Journal of Mathematics and Computer Applications, ISSN: 2754-6705.

[6] El-Mikkawy, M.E.A. and Rahmo, E. (2010) Symbolic Algorithm for Inverting Cyclic Pen-
tadiagonal Matrices Recursively—Derivation and Implementation. Computers and Mathe-
matics with Applications, 59, 1386-1396.

[7] Kavcic, A. and Moura, J.M.F. (2000) Matrices with Banded Inverses: Inversion Algorithms
and Factorization of Gauss-Markov Processes. IEEE Transactions on Information Theory,
46, 1495-1509.

[8] Wang, X.B. (2009) A New Algorithm with Its Scilab Implementation for Solution of Bor-
dered Tridiagonal Linear Equations. 2009 IEEE International Workshop on Open-Source
Software for Scientific Computation (OSSC), Guiyang, 18-20 September 2009, 11-14.

[9] Golub, G. and Van Loan, C. (1996) Matrix Computations. Third Edition, The Johns Hopkins
University Press, Baltimore and London.

[10] El-Mikkawy, M.E.A. and Atlan, F. (2014) Algorithms for Solving Doubly Bordered Tridi-
agonal Linear Systems. British Journal of Mathematics and Computer Science, 4, 1246-
1267.

[11] Burden, R.L. and Faires, J.D. (2001) Numerical Analysis. Seventh Edition, Books and Cole
Publishing, Pacific Grove.

[12] B. Talibi, A.Aiat Hadj, D. Sarsri,UC Factorization and Inversion of Tridiagonal Matrices,
Journal of Physical Mathematics and its Applications, ISSN: 3033-3652.

[13] Karawia, A.A. (2013) Symbolic Algorithm for Solving Comrade Linear Systems Based on
a Modified Stair-Diagonal Approach. Applied Mathematics Letters, 26, 913-918.

[14] B. Talibi, A.Aiat Hadj, D. Sarsri, A Numerical Method for Inverting Bordered k-
Tridiagonal Matrices, International Journal of Mathematics and Computer Research, Vol-
ume 13, Issue 02 Februaru 2025.

"An Efficient Algorithm for the Inverse of P-Diagonal Toeplitz Matrices"

4892



[15] Karawia, A.A. (2012) A New Recursive Algorithm for Inverting a General Comrade Ma-
trix. CoRR abs/1210.4662.

[16] Karawia, A.A. and Rizvi, Q.M. (2013) On Solving a General Bordered Tridiagonal Linear
System. International Journal of Mathematics and Mathematical Sciences, 33, 1160-1163.

[17] B. Talibi, A.Aiat Hadj, D. Sarsri,On the heptadiagonal matrix CL factorization, Interna-
tional Journal of Mathematics and Computer Research, Volume 13, Issue 02 Februaru 2025.

"An Efficient Algorithm for the Inverse of P-Diagonal Toeplitz Matrices"

4893




